新一代交流電機(jī)控制更精確。
內(nèi)容簡(jiǎn)介:在交流電機(jī)中,只有定子電流受到直接控制。轉(zhuǎn)子通常使用永磁體來提供其領(lǐng)域。這意味著通量和扭矩依賴于相同的電流。但是,面向場(chǎng)的控制提供了幾乎獨(dú)立操縱它們的能力。實(shí)際上,定子磁通被動(dòng)態(tài)地控制以提供獨(dú)立操縱轉(zhuǎn)矩的能力。
到2035年,全球每年將消耗超過35萬億千瓦小時(shí)的電力,從2015年的不足21萬億千瓦時(shí)增加到現(xiàn)在所需的近三分之一的電能,用于工業(yè)生產(chǎn)。這些電機(jī)中的許多都基于簡(jiǎn)單的交流電設(shè)計(jì),因?yàn)樗鼈兂杀鞠鄬?duì)較低并且易于驅(qū)動(dòng)。在能源使用方面它們的效率也很低,特別是在低速情況下。但是,這種交流電機(jī)本質(zhì)上并不浪費(fèi)。采用正確的電子控制形式,其效率可以顯著提高。使用當(dāng)今可用的控制技術(shù),可以將給定工作水平的能耗降低多達(dá)60%。
目前使用的最簡(jiǎn)單的控制技術(shù)是每赫茲伏特。這在概念上既簡(jiǎn)單又容易在基本的微控制器上實(shí)現(xiàn)。核心算法充分利用了交流電機(jī)設(shè)計(jì)的核心特性。每個(gè)電機(jī)都有一個(gè)特性磁化電流和一個(gè)最終的磁通量和轉(zhuǎn)矩。這些屬性通過伏特每赫茲比率相關(guān)。電機(jī)通過布置在移動(dòng)轉(zhuǎn)子周圍的定子線圈的轉(zhuǎn)換來轉(zhuǎn)動(dòng)機(jī)械負(fù)載。線圈之間的切換迫使轉(zhuǎn)子的磁化元件同情地轉(zhuǎn)動(dòng)到磁場(chǎng)保持平衡的穩(wěn)定狀態(tài)。
線圈切換頻率的增加反過來會(huì)提高速度。但是,如果供應(yīng)的電能沒有相應(yīng)增加,則施加的轉(zhuǎn)矩會(huì)下降。伏特每赫茲的控制提供了一個(gè)簡(jiǎn)單的方法來解決這個(gè)問題,通過增加線路電壓來提高頻率,使扭矩可以保持在一個(gè)恒定的水平。不幸的是,這種關(guān)系在低速下不是特別一致。需要更高的電壓以在低速下保持高轉(zhuǎn)矩,但效率下降并增加了線圈飽和和過熱的可能性。
磁場(chǎng)定向控制提供了一種優(yōu)化電機(jī)控制的方法,特別是在低速情況下,并且還可以使電機(jī)的定位控制更精確。這增加了整個(gè)交流電機(jī)的應(yīng)用范圍,這有助于降低工業(yè)機(jī)械的成本以及運(yùn)營(yíng)成本。
在磁場(chǎng)定向或磁通矢量控制中,速度和扭矩之間的關(guān)系由伏特每赫茲控制所打破。磁場(chǎng)定向控制的思想可以用直流電機(jī)的模型來表達(dá),其中提供給定子和轉(zhuǎn)子的電流是獨(dú)立的。在這個(gè)模型中,扭矩和產(chǎn)生的流量可以獨(dú)立控制。由電流產(chǎn)生的電機(jī)組內(nèi)部的場(chǎng)強(qiáng)決定了磁通量。提供給轉(zhuǎn)子中的電磁線圈的電流控制轉(zhuǎn)矩 - 當(dāng)磁場(chǎng)試圖使自己進(jìn)入穩(wěn)定狀態(tài)時(shí)。
直流電動(dòng)機(jī)在轉(zhuǎn)子上使用換向器,該換向器執(zhí)行控制定子上的哪些線圈在任何時(shí)間都被激勵(lì)的工作。換向器的設(shè)計(jì)使得電流切換到機(jī)械對(duì)齊的繞組,從而在該點(diǎn)產(chǎn)生最大轉(zhuǎn)矩。結(jié)果,繞組的管理方式使得磁通量變化,以保持轉(zhuǎn)子繞組與定子中產(chǎn)生的磁場(chǎng)正交。
在交流電機(jī)中,只有定子電流受到直接控制。轉(zhuǎn)子通常使用永磁體來提供其領(lǐng)域。這意味著通量和扭矩依賴于相同的電流。但是,面向場(chǎng)的控制提供了幾乎獨(dú)立操縱它們的能力。實(shí)際上,定子磁通被動(dòng)態(tài)地控制以提供獨(dú)立操縱轉(zhuǎn)矩的能力。通常,定子線圈可以被驅(qū)動(dòng),以便它們或者產(chǎn)生轉(zhuǎn)矩或者沿著定子軸施加力,這是一種不影響旋轉(zhuǎn)的模式。這些方向分別是正交軸和直接軸。為了運(yùn)動(dòng),每個(gè)線圈依次被驅(qū)動(dòng)以產(chǎn)生高正交力。
幾個(gè)數(shù)學(xué)變換被用來提供改變電流和電壓的能力來解耦扭矩和通量。在磁場(chǎng)定向控制下,流過定子不同部分的電流由矢量表示。矩陣投影將三相時(shí)間和速度相關(guān)系統(tǒng)轉(zhuǎn)換為兩個(gè)坐標(biāo)時(shí)間不變系統(tǒng)。通常使用分別表示通量和轉(zhuǎn)矩分量的符號(hào)d和q來描述坐標(biāo)。在(d,q)參考系中,施加的轉(zhuǎn)矩與轉(zhuǎn)矩分量呈線性關(guān)系。
在磁場(chǎng)定向控制下,從電機(jī)接收電信號(hào)并將其結(jié)合到(d,q)坐標(biāo)模型中。該模型通常相對(duì)于轉(zhuǎn)子進(jìn)行計(jì)算,使得計(jì)算所需流量更加容易。用于計(jì)算的典型方法是對(duì)Clarke和Park變換進(jìn)行配對(duì)。
克拉克變換將來自不同相位的電流(通常為三個(gè)),并用它們來估計(jì)笛卡爾坐標(biāo)系中的電流。這些系統(tǒng)的軸使用符號(hào)α和β而不是傳統(tǒng)的x和y來減少與空間坐標(biāo)系混淆的可能性。然后將這些應(yīng)用于Park變換以提供在旋轉(zhuǎn)(d,q)坐標(biāo)系中看到的當(dāng)前矢量。三角函數(shù)提供了轉(zhuǎn)換的核心,需要使用微控制器或數(shù)字信號(hào)處理器(DSP)。
通過Clarke和Park變換,(d,q)空間中的電流矢量的磁通量和轉(zhuǎn)矩分量是從饋送給每個(gè)電相位的電流和轉(zhuǎn)子磁通位置獲得的,其在大部分描述中采用符號(hào)theta算法。這種結(jié)構(gòu)適用于一系列電機(jī)。逆帕克變換被用來產(chǎn)生電壓輸出,然后用于控制三相中的每一個(gè)的功率的算法中。整體結(jié)構(gòu)如圖1所示。
用于磁場(chǎng)定向控制的變換和控制塊的基本配置的圖像
通過簡(jiǎn)單地改變磁通基準(zhǔn)和獲得轉(zhuǎn)子磁通位置,可以使用相同的磁芯結(jié)構(gòu)來控制同步電機(jī)和感應(yīng)電機(jī)。在同步永磁電機(jī)中,轉(zhuǎn)子磁通是固定的,因?yàn)樗捎来朋w確定。感應(yīng)電動(dòng)機(jī)需要?jiǎng)?chuàng)建轉(zhuǎn)子磁通才能起作用,所以這被作為非零值并入到磁通參考中。
磁場(chǎng)定向控制成功的關(guān)鍵是實(shí)時(shí)預(yù)測(cè)轉(zhuǎn)子磁通位置。這種控制策略是復(fù)雜的。在交流感應(yīng)電機(jī)內(nèi)部,轉(zhuǎn)子的轉(zhuǎn)速與驅(qū)動(dòng)其旋轉(zhuǎn)的磁通量的速度不匹配。轉(zhuǎn)子傾向于滯后,導(dǎo)致差異被稱為滑動(dòng)速度。在以前的方案中,電機(jī)制造商使用傳感器來分析轉(zhuǎn)子位置,但這會(huì)導(dǎo)致不必要的額外成本。在實(shí)踐中,可以使用電機(jī)內(nèi)部產(chǎn)生的電壓和電流的反饋來補(bǔ)償滑差。
許多系統(tǒng)使用測(cè)量的反電動(dòng)勢(shì)來估計(jì)轉(zhuǎn)子打滑。反電動(dòng)勢(shì)電壓的大小與轉(zhuǎn)子的速度成正比。但是,直接使用此輸入會(huì)導(dǎo)致速度低或停頓時(shí)出現(xiàn)問題,并且估計(jì)初始位置并不容易。從未知的轉(zhuǎn)子位置開始,可能會(huì)導(dǎo)致電機(jī)意外地反轉(zhuǎn)一小段距離,或?qū)е码姍C(jī)完全啟動(dòng)失敗。簡(jiǎn)單采樣反電動(dòng)勢(shì)的另一個(gè)缺點(diǎn)是它對(duì)定子電阻的敏感性,定子電阻容易隨溫度而變化。
基于間接模型的方案提供更高的性能。計(jì)算開銷和性能之間存在很大的折衷,但總的來說,通過使用更復(fù)雜的基于模型的算法可以提高效率,特別是在低速下。基于間接模型的方案基于可用的傳感器讀數(shù)來估計(jì)這些方案的實(shí)時(shí)值。
與反電動(dòng)勢(shì)估算一樣,核心問題是確定電動(dòng)機(jī)的起點(diǎn)。一種解決方案是從初始狀態(tài)的估計(jì)開始,根據(jù)該初始狀態(tài)可以導(dǎo)出預(yù)測(cè)輸出的向量,將其與測(cè)量的輸出向量進(jìn)行比較。這個(gè)差別用于修正模型的內(nèi)部狀態(tài)向量。但是,噪音會(huì)破壞模型的穩(wěn)定性。
擴(kuò)展卡爾曼濾波器可以補(bǔ)償噪聲和突發(fā)干擾的影響。卡爾曼濾波器的體系結(jié)構(gòu)使得被認(rèn)為具有較低不確定性的更新被賦予比被估計(jì)具有較大不確定性的更高的權(quán)重。濾波器遞歸地工作,使得每個(gè)估計(jì)僅需要一組新的讀數(shù)和濾波器的先前狀態(tài)以產(chǎn)生新的狀態(tài)。
卡爾曼濾波器采用兩個(gè)主要階段:預(yù)測(cè)和更新。在預(yù)測(cè)階段,濾波器根據(jù)先前的狀態(tài)計(jì)算系統(tǒng)的下一個(gè)狀態(tài),在運(yùn)動(dòng)算法的情況下,該狀態(tài)提供最后已知的速度和加速度值。由此,過濾器計(jì)算當(dāng)前位置的預(yù)測(cè)。
在更新階段,將新采樣的電壓和電流值與其預(yù)測(cè)值進(jìn)行比較。輸入數(shù)據(jù)越接近預(yù)測(cè),錯(cuò)誤概率越低。該誤差概率反饋到卡爾曼濾波器增益中。在算法級(jí)別,卡爾曼濾波器依賴于一些矩陣乘法和倒置。因此,在電機(jī)控制中實(shí)施擴(kuò)展卡爾曼濾波器的關(guān)鍵在于高算術(shù)性能,這與場(chǎng)定向控制的其他方面一致。
為了在實(shí)時(shí)電機(jī)控制情況下實(shí)現(xiàn)每秒所需的許多算術(shù)運(yùn)算,需要高性能的MCU或DSP。德州儀器(TI)生產(chǎn)的TMS320F2833x系列器件專為處理交流電機(jī)應(yīng)用的典型計(jì)算負(fù)載而開發(fā),并由各種片上外設(shè)提供支持,以幫助與電源轉(zhuǎn)換電子器件集成。
TMS320F2833x采用高性能32位CPU構(gòu)建,支持浮點(diǎn)運(yùn)算,符合單精度算術(shù)的IEEE754標(biāo)準(zhǔn)。通過實(shí)現(xiàn)符合IEEE標(biāo)準(zhǔn)的浮點(diǎn)單元,TMS320F2833x簡(jiǎn)化了算法開發(fā),因?yàn)樗幚淼臄?shù)字范圍非常寬,并且內(nèi)置了對(duì)非數(shù)字(NaN)和零除條件等錯(cuò)誤的支持。與雙16&TImes;16乘法累加(MAC)單元相結(jié)合的哈佛架構(gòu)為矩陣和基于投影的操作提供了高吞吐量。為了獲得更高的精度,單元可以連接在一起以執(zhí)行32 x 32 MAC。片上外設(shè)包括一個(gè)16通道模數(shù)轉(zhuǎn)換器(ADC),用于對(duì)電機(jī)的電壓和電流反饋信號(hào)進(jìn)行采樣。
作為C2000系列DSP增強(qiáng)型MCU的成員,TMS320F2833x得到了TI數(shù)字電機(jī)控制庫(kù)的支持,該庫(kù)提供了可重復(fù)使用的可配置軟件模塊,以實(shí)施各種控制策略。該庫(kù)由表示為塊的功能組成,除了用于閉環(huán)操作的控制塊外,還提供諸如Clarke和Park之類的變換,以及用于諸如脈寬調(diào)制(PWM)等功能的外圍驅(qū)動(dòng)器。
在電機(jī)控制情況下,PWM輸出控制六個(gè)功率晶體管,它們共同為三個(gè)電相提供電壓和電流。每個(gè)階段使用半橋晶體管配置。在這些情況下用于控制的常用算法是空間矢量PWM。與簡(jiǎn)單的PWM技術(shù)相比,這減少了諧波,并采用八個(gè)開關(guān)狀態(tài)。有六個(gè)活動(dòng)狀態(tài)和兩個(gè)零狀態(tài),每個(gè)狀態(tài)都是八個(gè)相應(yīng)空間矢量的目標(biāo)狀態(tài)。這些狀態(tài)以這樣的方式排列,即任何時(shí)候兩組互補(bǔ)狀態(tài)都是有效的。一組用于三個(gè)高端功率晶體管,另一組用于低端。該算法循環(huán)通過狀態(tài)以根據(jù)場(chǎng)定向控制模型的要求將功率切換到狀態(tài)。TMS320F2833x包含適用于采用空間矢量切換的軟件控制的PWM硬件。18個(gè)總PWM輸出中的6個(gè)支持高精度控制,分辨率為150 ps。其結(jié)果是一個(gè)數(shù)字控制器,需要相對(duì)較少的外部硬件來管理功率晶體管,如圖2所示。
F2833x PWM輸出控制電源相位的框圖
結(jié)論
利用具有必要核心和高性能構(gòu)建模塊的微控制器以及TI數(shù)字電機(jī)控制庫(kù),設(shè)計(jì)人員準(zhǔn)備推出新一代高效交流電機(jī)。
轉(zhuǎn)載請(qǐng)說明來自西安泰富西瑪電機(jī)(西安西瑪電機(jī)集團(tuán)股份有限公司)官方網(wǎng)站:http://www.zmbaxc.cn/zixun/hangyedongtai169.html
目前使用的最簡(jiǎn)單的控制技術(shù)是每赫茲伏特。這在概念上既簡(jiǎn)單又容易在基本的微控制器上實(shí)現(xiàn)。核心算法充分利用了交流電機(jī)設(shè)計(jì)的核心特性。每個(gè)電機(jī)都有一個(gè)特性磁化電流和一個(gè)最終的磁通量和轉(zhuǎn)矩。這些屬性通過伏特每赫茲比率相關(guān)。電機(jī)通過布置在移動(dòng)轉(zhuǎn)子周圍的定子線圈的轉(zhuǎn)換來轉(zhuǎn)動(dòng)機(jī)械負(fù)載。線圈之間的切換迫使轉(zhuǎn)子的磁化元件同情地轉(zhuǎn)動(dòng)到磁場(chǎng)保持平衡的穩(wěn)定狀態(tài)。
線圈切換頻率的增加反過來會(huì)提高速度。但是,如果供應(yīng)的電能沒有相應(yīng)增加,則施加的轉(zhuǎn)矩會(huì)下降。伏特每赫茲的控制提供了一個(gè)簡(jiǎn)單的方法來解決這個(gè)問題,通過增加線路電壓來提高頻率,使扭矩可以保持在一個(gè)恒定的水平。不幸的是,這種關(guān)系在低速下不是特別一致。需要更高的電壓以在低速下保持高轉(zhuǎn)矩,但效率下降并增加了線圈飽和和過熱的可能性。
磁場(chǎng)定向控制提供了一種優(yōu)化電機(jī)控制的方法,特別是在低速情況下,并且還可以使電機(jī)的定位控制更精確。這增加了整個(gè)交流電機(jī)的應(yīng)用范圍,這有助于降低工業(yè)機(jī)械的成本以及運(yùn)營(yíng)成本。
在磁場(chǎng)定向或磁通矢量控制中,速度和扭矩之間的關(guān)系由伏特每赫茲控制所打破。磁場(chǎng)定向控制的思想可以用直流電機(jī)的模型來表達(dá),其中提供給定子和轉(zhuǎn)子的電流是獨(dú)立的。在這個(gè)模型中,扭矩和產(chǎn)生的流量可以獨(dú)立控制。由電流產(chǎn)生的電機(jī)組內(nèi)部的場(chǎng)強(qiáng)決定了磁通量。提供給轉(zhuǎn)子中的電磁線圈的電流控制轉(zhuǎn)矩 - 當(dāng)磁場(chǎng)試圖使自己進(jìn)入穩(wěn)定狀態(tài)時(shí)。
直流電動(dòng)機(jī)在轉(zhuǎn)子上使用換向器,該換向器執(zhí)行控制定子上的哪些線圈在任何時(shí)間都被激勵(lì)的工作。換向器的設(shè)計(jì)使得電流切換到機(jī)械對(duì)齊的繞組,從而在該點(diǎn)產(chǎn)生最大轉(zhuǎn)矩。結(jié)果,繞組的管理方式使得磁通量變化,以保持轉(zhuǎn)子繞組與定子中產(chǎn)生的磁場(chǎng)正交。
在交流電機(jī)中,只有定子電流受到直接控制。轉(zhuǎn)子通常使用永磁體來提供其領(lǐng)域。這意味著通量和扭矩依賴于相同的電流。但是,面向場(chǎng)的控制提供了幾乎獨(dú)立操縱它們的能力。實(shí)際上,定子磁通被動(dòng)態(tài)地控制以提供獨(dú)立操縱轉(zhuǎn)矩的能力。通常,定子線圈可以被驅(qū)動(dòng),以便它們或者產(chǎn)生轉(zhuǎn)矩或者沿著定子軸施加力,這是一種不影響旋轉(zhuǎn)的模式。這些方向分別是正交軸和直接軸。為了運(yùn)動(dòng),每個(gè)線圈依次被驅(qū)動(dòng)以產(chǎn)生高正交力。
幾個(gè)數(shù)學(xué)變換被用來提供改變電流和電壓的能力來解耦扭矩和通量。在磁場(chǎng)定向控制下,流過定子不同部分的電流由矢量表示。矩陣投影將三相時(shí)間和速度相關(guān)系統(tǒng)轉(zhuǎn)換為兩個(gè)坐標(biāo)時(shí)間不變系統(tǒng)。通常使用分別表示通量和轉(zhuǎn)矩分量的符號(hào)d和q來描述坐標(biāo)。在(d,q)參考系中,施加的轉(zhuǎn)矩與轉(zhuǎn)矩分量呈線性關(guān)系。
在磁場(chǎng)定向控制下,從電機(jī)接收電信號(hào)并將其結(jié)合到(d,q)坐標(biāo)模型中。該模型通常相對(duì)于轉(zhuǎn)子進(jìn)行計(jì)算,使得計(jì)算所需流量更加容易。用于計(jì)算的典型方法是對(duì)Clarke和Park變換進(jìn)行配對(duì)。
克拉克變換將來自不同相位的電流(通常為三個(gè)),并用它們來估計(jì)笛卡爾坐標(biāo)系中的電流。這些系統(tǒng)的軸使用符號(hào)α和β而不是傳統(tǒng)的x和y來減少與空間坐標(biāo)系混淆的可能性。然后將這些應(yīng)用于Park變換以提供在旋轉(zhuǎn)(d,q)坐標(biāo)系中看到的當(dāng)前矢量。三角函數(shù)提供了轉(zhuǎn)換的核心,需要使用微控制器或數(shù)字信號(hào)處理器(DSP)。
通過Clarke和Park變換,(d,q)空間中的電流矢量的磁通量和轉(zhuǎn)矩分量是從饋送給每個(gè)電相位的電流和轉(zhuǎn)子磁通位置獲得的,其在大部分描述中采用符號(hào)theta算法。這種結(jié)構(gòu)適用于一系列電機(jī)。逆帕克變換被用來產(chǎn)生電壓輸出,然后用于控制三相中的每一個(gè)的功率的算法中。整體結(jié)構(gòu)如圖1所示。
用于磁場(chǎng)定向控制的變換和控制塊的基本配置的圖像
圖1:用于磁場(chǎng)定向控制的變換和控制塊的基本配置。
通過簡(jiǎn)單地改變磁通基準(zhǔn)和獲得轉(zhuǎn)子磁通位置,可以使用相同的磁芯結(jié)構(gòu)來控制同步電機(jī)和感應(yīng)電機(jī)。在同步永磁電機(jī)中,轉(zhuǎn)子磁通是固定的,因?yàn)樗捎来朋w確定。感應(yīng)電動(dòng)機(jī)需要?jiǎng)?chuàng)建轉(zhuǎn)子磁通才能起作用,所以這被作為非零值并入到磁通參考中。
磁場(chǎng)定向控制成功的關(guān)鍵是實(shí)時(shí)預(yù)測(cè)轉(zhuǎn)子磁通位置。這種控制策略是復(fù)雜的。在交流感應(yīng)電機(jī)內(nèi)部,轉(zhuǎn)子的轉(zhuǎn)速與驅(qū)動(dòng)其旋轉(zhuǎn)的磁通量的速度不匹配。轉(zhuǎn)子傾向于滯后,導(dǎo)致差異被稱為滑動(dòng)速度。在以前的方案中,電機(jī)制造商使用傳感器來分析轉(zhuǎn)子位置,但這會(huì)導(dǎo)致不必要的額外成本。在實(shí)踐中,可以使用電機(jī)內(nèi)部產(chǎn)生的電壓和電流的反饋來補(bǔ)償滑差。
許多系統(tǒng)使用測(cè)量的反電動(dòng)勢(shì)來估計(jì)轉(zhuǎn)子打滑。反電動(dòng)勢(shì)電壓的大小與轉(zhuǎn)子的速度成正比。但是,直接使用此輸入會(huì)導(dǎo)致速度低或停頓時(shí)出現(xiàn)問題,并且估計(jì)初始位置并不容易。從未知的轉(zhuǎn)子位置開始,可能會(huì)導(dǎo)致電機(jī)意外地反轉(zhuǎn)一小段距離,或?qū)е码姍C(jī)完全啟動(dòng)失敗。簡(jiǎn)單采樣反電動(dòng)勢(shì)的另一個(gè)缺點(diǎn)是它對(duì)定子電阻的敏感性,定子電阻容易隨溫度而變化。
基于間接模型的方案提供更高的性能。計(jì)算開銷和性能之間存在很大的折衷,但總的來說,通過使用更復(fù)雜的基于模型的算法可以提高效率,特別是在低速下。基于間接模型的方案基于可用的傳感器讀數(shù)來估計(jì)這些方案的實(shí)時(shí)值。
與反電動(dòng)勢(shì)估算一樣,核心問題是確定電動(dòng)機(jī)的起點(diǎn)。一種解決方案是從初始狀態(tài)的估計(jì)開始,根據(jù)該初始狀態(tài)可以導(dǎo)出預(yù)測(cè)輸出的向量,將其與測(cè)量的輸出向量進(jìn)行比較。這個(gè)差別用于修正模型的內(nèi)部狀態(tài)向量。但是,噪音會(huì)破壞模型的穩(wěn)定性。
擴(kuò)展卡爾曼濾波器可以補(bǔ)償噪聲和突發(fā)干擾的影響。卡爾曼濾波器的體系結(jié)構(gòu)使得被認(rèn)為具有較低不確定性的更新被賦予比被估計(jì)具有較大不確定性的更高的權(quán)重。濾波器遞歸地工作,使得每個(gè)估計(jì)僅需要一組新的讀數(shù)和濾波器的先前狀態(tài)以產(chǎn)生新的狀態(tài)。
卡爾曼濾波器采用兩個(gè)主要階段:預(yù)測(cè)和更新。在預(yù)測(cè)階段,濾波器根據(jù)先前的狀態(tài)計(jì)算系統(tǒng)的下一個(gè)狀態(tài),在運(yùn)動(dòng)算法的情況下,該狀態(tài)提供最后已知的速度和加速度值。由此,過濾器計(jì)算當(dāng)前位置的預(yù)測(cè)。
在更新階段,將新采樣的電壓和電流值與其預(yù)測(cè)值進(jìn)行比較。輸入數(shù)據(jù)越接近預(yù)測(cè),錯(cuò)誤概率越低。該誤差概率反饋到卡爾曼濾波器增益中。在算法級(jí)別,卡爾曼濾波器依賴于一些矩陣乘法和倒置。因此,在電機(jī)控制中實(shí)施擴(kuò)展卡爾曼濾波器的關(guān)鍵在于高算術(shù)性能,這與場(chǎng)定向控制的其他方面一致。
為了在實(shí)時(shí)電機(jī)控制情況下實(shí)現(xiàn)每秒所需的許多算術(shù)運(yùn)算,需要高性能的MCU或DSP。德州儀器(TI)生產(chǎn)的TMS320F2833x系列器件專為處理交流電機(jī)應(yīng)用的典型計(jì)算負(fù)載而開發(fā),并由各種片上外設(shè)提供支持,以幫助與電源轉(zhuǎn)換電子器件集成。
TMS320F2833x采用高性能32位CPU構(gòu)建,支持浮點(diǎn)運(yùn)算,符合單精度算術(shù)的IEEE754標(biāo)準(zhǔn)。通過實(shí)現(xiàn)符合IEEE標(biāo)準(zhǔn)的浮點(diǎn)單元,TMS320F2833x簡(jiǎn)化了算法開發(fā),因?yàn)樗幚淼臄?shù)字范圍非常寬,并且內(nèi)置了對(duì)非數(shù)字(NaN)和零除條件等錯(cuò)誤的支持。與雙16&TImes;16乘法累加(MAC)單元相結(jié)合的哈佛架構(gòu)為矩陣和基于投影的操作提供了高吞吐量。為了獲得更高的精度,單元可以連接在一起以執(zhí)行32 x 32 MAC。片上外設(shè)包括一個(gè)16通道模數(shù)轉(zhuǎn)換器(ADC),用于對(duì)電機(jī)的電壓和電流反饋信號(hào)進(jìn)行采樣。
作為C2000系列DSP增強(qiáng)型MCU的成員,TMS320F2833x得到了TI數(shù)字電機(jī)控制庫(kù)的支持,該庫(kù)提供了可重復(fù)使用的可配置軟件模塊,以實(shí)施各種控制策略。該庫(kù)由表示為塊的功能組成,除了用于閉環(huán)操作的控制塊外,還提供諸如Clarke和Park之類的變換,以及用于諸如脈寬調(diào)制(PWM)等功能的外圍驅(qū)動(dòng)器。
在電機(jī)控制情況下,PWM輸出控制六個(gè)功率晶體管,它們共同為三個(gè)電相提供電壓和電流。每個(gè)階段使用半橋晶體管配置。在這些情況下用于控制的常用算法是空間矢量PWM。與簡(jiǎn)單的PWM技術(shù)相比,這減少了諧波,并采用八個(gè)開關(guān)狀態(tài)。有六個(gè)活動(dòng)狀態(tài)和兩個(gè)零狀態(tài),每個(gè)狀態(tài)都是八個(gè)相應(yīng)空間矢量的目標(biāo)狀態(tài)。這些狀態(tài)以這樣的方式排列,即任何時(shí)候兩組互補(bǔ)狀態(tài)都是有效的。一組用于三個(gè)高端功率晶體管,另一組用于低端。該算法循環(huán)通過狀態(tài)以根據(jù)場(chǎng)定向控制模型的要求將功率切換到狀態(tài)。TMS320F2833x包含適用于采用空間矢量切換的軟件控制的PWM硬件。18個(gè)總PWM輸出中的6個(gè)支持高精度控制,分辨率為150 ps。其結(jié)果是一個(gè)數(shù)字控制器,需要相對(duì)較少的外部硬件來管理功率晶體管,如圖2所示。
F2833x PWM輸出控制電源相位的框圖
圖2:框圖,顯示了F2833x的PWM輸出對(duì)功率相位的控制。
結(jié)論
利用具有必要核心和高性能構(gòu)建模塊的微控制器以及TI數(shù)字電機(jī)控制庫(kù),設(shè)計(jì)人員準(zhǔn)備推出新一代高效交流電機(jī)。
轉(zhuǎn)載請(qǐng)說明來自西安泰富西瑪電機(jī)(西安西瑪電機(jī)集團(tuán)股份有限公司)官方網(wǎng)站:http://www.zmbaxc.cn/zixun/hangyedongtai169.html
以上內(nèi)容由西安泰富西瑪電機(jī)(西安西瑪電機(jī)集團(tuán)股份有限公司)網(wǎng)絡(luò)編輯部收集整理發(fā)布,僅為傳播更多電機(jī)行業(yè)相關(guān)資訊及電機(jī)相關(guān)知識(shí),僅供網(wǎng)友、用戶、及廣大經(jīng)銷商參考之用,不代表西安泰富西瑪電機(jī)同意或默認(rèn)以上內(nèi)容的正確性和有效性。讀者根據(jù)本文內(nèi)容所進(jìn)行的任何商業(yè)行為,西安泰富西瑪電機(jī)不承擔(dān)任何連帶責(zé)任。如果以上內(nèi)容不實(shí)或侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)及時(shí)與我們聯(lián)系,西安泰富西瑪電機(jī)網(wǎng)絡(luò)部將及時(shí)予以修正或刪除相關(guān)信息。
他們還瀏覽了...
- 2022-5-22綠色發(fā)展可以幫助電機(jī)廠家解決利潤(rùn)問題
- 2022-5-14需要更換高效節(jié)能的電機(jī)的必要性分析!
- 2022-5-4舊的“以大代小”西瑪電機(jī)有很多限制
- 2022-3-27高壓電機(jī)的一些固有優(yōu)勢(shì)注定會(huì)得到市場(chǎng)的認(rèn)可和青睞!
- 2022-3-6為什么要用高壓電機(jī)來替代大功率電機(jī)?
- 2018-4-13五年內(nèi)EV電機(jī)的技術(shù)制高點(diǎn)在哪里?
- 2018-4-9電機(jī)如何用物聯(lián)網(wǎng)為傳統(tǒng)應(yīng)用加持?
- 2018-3-28特朗普擬對(duì)中國(guó)電機(jī)行業(yè)征收關(guān)稅。
- 2018-3-25論新能源汽車驅(qū)動(dòng)電機(jī)繞組制造裝備技術(shù)研發(fā)與推廣。
- 2018-3-25國(guó)內(nèi)外驅(qū)動(dòng)電機(jī)有什么區(qū)別,熟優(yōu)熟劣?
行業(yè)資訊
電機(jī)風(fēng)罩的工作原理及其用途。
高壓電機(jī)軸磨損維修的詳細(xì)流程
三相異步電動(dòng)機(jī)安裝步驟以及西瑪電機(jī)的故障檢查
西瑪電機(jī)接線中最常見的幾種錯(cuò)誤
綠色發(fā)展可以幫助電機(jī)廠家解決利潤(rùn)問題
高效節(jié)能電機(jī)過熱原因分析
需要更換高效節(jié)能的電機(jī)的必要性分析!
西安西瑪電機(jī)頻率和速度之間的數(shù)學(xué)關(guān)系
高壓電機(jī)軸磨損維修的詳細(xì)流程
三相異步電動(dòng)機(jī)安裝步驟以及西瑪電機(jī)的故障檢查
西瑪電機(jī)接線中最常見的幾種錯(cuò)誤
綠色發(fā)展可以幫助電機(jī)廠家解決利潤(rùn)問題
高效節(jié)能電機(jī)過熱原因分析
需要更換高效節(jié)能的電機(jī)的必要性分析!
西安西瑪電機(jī)頻率和速度之間的數(shù)學(xué)關(guān)系
西安西瑪電機(jī)舉辦“迎國(guó)慶”員工趣味運(yùn)動(dòng)項(xiàng)目比
關(guān)于西安西瑪電機(jī)的工作制,大家了解一下。
西安西瑪電機(jī)工會(huì)慶祝3月8日的評(píng)選頒獎(jiǎng)活動(dòng)。
西安西瑪電機(jī)向在抗擊疫情前線的工作人員們致敬
西安西瑪電機(jī)職工安全生產(chǎn)知識(shí)宣傳教育工作全面
西安泰富西瑪電機(jī)亮相第27屆中國(guó)西部國(guó)際裝備
西安泰富西瑪電機(jī)將高效節(jié)能三相異步電動(dòng)機(jī)作為
西安西瑪電機(jī)始終堅(jiān)持誠(chéng)信銷售的理念。
關(guān)于西安西瑪電機(jī)的工作制,大家了解一下。
西安西瑪電機(jī)工會(huì)慶祝3月8日的評(píng)選頒獎(jiǎng)活動(dòng)。
西安西瑪電機(jī)向在抗擊疫情前線的工作人員們致敬
西安西瑪電機(jī)職工安全生產(chǎn)知識(shí)宣傳教育工作全面
西安泰富西瑪電機(jī)亮相第27屆中國(guó)西部國(guó)際裝備
西安泰富西瑪電機(jī)將高效節(jié)能三相異步電動(dòng)機(jī)作為
西安西瑪電機(jī)始終堅(jiān)持誠(chéng)信銷售的理念。
泰富西瑪電機(jī)
配套電柜
電機(jī)配件
- YKK系列高壓三相異步電機(jī)西安泰富西瑪YKK系列(H355-1000)高壓三相異步電機(jī)可作驅(qū)動(dòng)
- Y2系列緊湊型高壓異步電機(jī)西安泰富西瑪?Y2系列(H355-560)6KV緊湊型高壓異步電機(jī)可
- YE3系列高效節(jié)能電機(jī)西安泰富西瑪電機(jī)生產(chǎn)的YE3系列高效節(jié)能電機(jī)達(dá)到了國(guó)標(biāo)二級(jí)能效標(biāo)準(zhǔn),
- Z4系列直流電機(jī)西安泰富西瑪Z4系列直流電動(dòng)機(jī)比Z2、Z3系列具有更大的優(yōu)越性,它不
- Z2系列小型直流電機(jī)西安泰富西瑪Z2系列電機(jī)為一般工業(yè)用小型直流電機(jī),其電動(dòng)機(jī)適用于恒功
- ZTP型鐵路機(jī)車動(dòng)車用直流輔助西安泰富西瑪ZTP系列西瑪電機(jī)應(yīng)能滿足鐵路機(jī)車動(dòng)車用直流輔助電機(jī)通用